МИНИСТЕРСТВО ОБРАЗОВАНИЯ ОРЕНБУРГСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «АКБУЛАКСКИЙ ПОЛИТЕХНИЧЕСКИЙ ТЕХНИКУМ»

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ууп.03 «Физика»

(372 часа) По профессии 15.01.05 «Сварщик (ручной и частично механизированной сварки) (наплавки)»

Форма обучения: очная

Нормативный срок освоения: <u>2 года 10 месяцев</u> База обучения: основное общее образование

Рабочая программа предназначена для преподавания дисциплины общеобразовательного цикла обучающимся очной формы обучения по профессии 15.01.05 «Сварщик (ручной и частично механизированной сварки) (наплавки)»

Рабочая программа учебной дисциплины разработана на основе:

- Федерального государственного образовательного стандарта среднего общего образования (утвержденный *приказом* Министерства образования и науки РФ от 17 мая 2012 г. N 413, с изменениями и дополнениями от: 29.12.2014г., 31.12.2015г., 29.06.2017г.);
- Примерной основной общеобразовательной программы среднего общего образования (одобрена решением федерального учебнометодического объединения по общему образованию (протокол от 28 июня 2016 г. № 2/16-з).

Организация-разработчик: ГАПОУ «АПТ» Разработчик: преподаватель высшей квалификационной категории Кривошеева Г.А.

Рецензенты: Медетова Яна Александровна, заместитель директора по общеобразовательным дисциплинам

Рекомендована методическим Советом ГАПОУ «АПТ», протокол № 10.06 от 10.06 2021г.

Рассмотрена методической комиссией преподавателей, протокол № 11.06 2021г.

Утверждена директором ГАПОУ «АПТ»

«14» 06, 2021r.

____/Симакова Е.В./

Содержание

- 1. Общая характеристика рабочей программы учебной дисциплины.
- 2. Структура и содержание учебной дисциплины.
- 3. Условия реализации учебной дисциплины
- 4. Контроль и оценка результатов освоения учебной дисциплины

1. Общая характеристика рабочей программы учебной дисциплины «Физика»

1.1.Область применения учебной дисциплины: программа учебной дисциплины «УУП -03 Физика» является частью основной профессиональной образовательной программы подготовки студентов в соответствии с ФГОС СОО по профессии 15.01.05 «Сварщик (ручной и частично механизированной сварки) (наплавки)»

Рабочая программа предназначена для изучения учебной дисциплины «УУП – 03 Физика» в качестве углубленной общеобразовательной дисциплины с учетом технического профиля, получаемого среднего профессионального образования при подготовке обучающихся по профессии 15.01.05 «Сварщик (ручной и частично механизированной сварки) (наплавки)»

1.2 Цель и планируемые результаты освоения дисциплины:

Изучение физики на профильном уровне среднего общего образования направлено на достижение следующих целей:

- освоение знаний о методах научного познания природы; современной физической картине мира: свойствах вещества и поля, пространственно-временных закономерностях, динамических и статистических законах природы, элементарных частицах и фундаментальных взаимодействиях, строении и эволюции Вселенной; знакомство с основами фундаментальных физических теорий классической механики, молекулярно-кинетической теории, термодинамики, классической электродинамики, специальной теории относительности, элементов квантовой теории;
- овладение умениями проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, выдвигать гипотезы и строить модели, устанавливать границы их применимости;
- применение знаний для объяснения явлений природы, свойств вещества, принципов работы технических устройств, решения физических задач, самостоятельного приобретения информации физического содержания и оценки достоверности, использования современных информационных технологий с целью поиска, переработки и предъявления учебной и научно-популярной информации по физике;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний, выполнения экспериментальных исследований, подготовки докладов, рефератов и других творческих работ;
- воспитание убежденности в необходимости обосновывать высказываемую позицию, уважительно относиться к мнению оппонента, сотрудничать в процессе совместного выполнения задач; готовности к морально-этической оценке использования научных достижений; уважения к творцам науки и техники, обеспечивающим ведущую роль физики в создании современного мира техники;
- использование приобретенных знаний и умений для решения практических, жизненных задач, рационального природопользования и охраны окружающей среды, обеспечения безопасности жизнедеятельности человека и общества.

Личностные результаты должны отражать:

- 1) российскую гражданскую идентичность, патриотизм, уважение к своему народу, чувства ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение государственных символов (герб, флаг, гимн);
- 2) гражданскую позицию как активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, обладающего чувством собственного достоинства, осознанно

принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности;

- 3) готовность к служению Отечеству, его защите;
- 4)сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- 5) сформированность основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовность и способность к самостоятельной, творческой и ответственной деятельности;
- 6)толерантное сознание и поведение в поликультурном мире, готовность и способность вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения, способность противостоять идеологии экстремизма, национализма, ксенофобии, дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям;
- 7) навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- 8) нравственное сознание и поведение на основе усвоения общечеловеческих ценностей;
- 9) готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- 10) эстетическое отношение к миру, включая эстетику быта, научного и технического творчества, спорта, общественных отношений;
- 11) принятие и реализацию ценностей здорового и безопасного образа жизни, потребности в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью, неприятие вредных привычек: курения, употребления алкоголя, наркотиков;
- 12) бережное, ответственное и компетентное отношение к физическому и психологическому здоровью, как собственному, так и других людей, умение оказывать первую помощь;
- 13) осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;
- 14) сформированность экологического мышления, понимания влияния социально-экономических процессов на состояние природной и социальной среды; приобретение опыта эколого-направленной деятельности;
- 15) ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни.

Метапредметные результаты освоения должны отражать:

- 1) умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
- 2) умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- 3) владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к

самостоятельному поиску методов решения практических задач, применению различных методов познания;

- 4) готовность и способность к самостоятельной информационно-познавательной деятельности, владение навыками получения необходимой информации из словарей разных типов, умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 5) умение использовать средства информационных и коммуникационных технологий (далее ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
 - 6) умение определять назначение и функции различных социальных институтов;
- 7) умение самостоятельно оценивать и принимать решения, определяющие стратегию поведения, с учетом гражданских и нравственных ценностей;
- 8) владение языковыми средствами умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
- 9) владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Изучение дисциплины направлено на формирование следующих компетенций:

компетенциі	۸ :
Код	Наименование общих компетенций
OK 01.	Выбирать способы решения задач профессиональной
	деятельности применительно к различным контекстам
OK 02.	Осуществлять поиск, анализ и интерпретацию информации, необходимой
OR 02.	для выполнения задач профессиональной деятельности
OK 03.	Планировать и реализовывать собственное профессиональное и личностное
OR 03.	развитие
ОК 04.	Работать в коллективе и команде, эффективно взаимодействовать с
OR 04.	коллегами, руководством, клиентами
ОК 05.	Осуществлять устную и письменную коммуникацию на государственном
OK 05.	языке с учетом особенностей социального и культурного контекста
ОК 06.	Проявлять гражданско-патриотическую позицию, демонстрировать
OK 00.	осознанное поведение на основе традиционных общечеловеческих ценностей,
	применять стандарт антикоррупционного поведения
ОК 07.	Содействовать сохранению окружающей среды, ресурсосбережению,
OR 07.	эффективно действовать в чрезвычайных ситуациях
ОК 09.	Использовать информационные технологии в профессиональной
OK 09.	деятельности
OK 10.	Пользоваться профессиональной документацией на государственном и
OK 10.	иностранных языках
OV 11	Использовать знания по финансовой грамотности, планировать
OK 11.	предпринимательскую деятельность в профессиональной сфере
L	

В рамках программы учебной дисциплины обучающимися осваиваются умения и знания

Код ОК	Умения	Знания
OK 01	- описывать и объяснять	- смысл понятий: физическое явление,
OK 02.	результаты наблюдений и	физическая величина, модель,
OK 03.	экспериментов: независимость	гипотеза, принцип, постулат, теория,
OK 04.	ускорения свободного падения от	пространство, время, инерциальная

OK 05.	массы падающего тела;	система отсчета, материальная точка,
OK 07.	нагревание газа при его быстром	вещество, взаимодействие, идеальный
OK 08.	сжатии и охлаждение при быстром	газ, резонанс, электромагнитные
OK 09.	расширении; повышение давления	колебания, электромагнитное поле,
OK 10.	газа при его нагревании в	электромагнитная волна, атом, квант,
	закрытом сосуде; броуновское	фотон, атомное ядро, дефект массы,
	движение; электризация тел при	энергия связи, радиоактивность,
	их контакте; взаимодействие	ионизирующее излучение, планета,
	проводников с током; действие	
	1 -	звезда, галактика, Вселенная;
	магнитного поля на проводник с	
	током; зависимость сопротивления	
	полупроводников от температуры	
	и освещения; электромагнитная	
	индукция; распространение	
	электромагнитных волн;	
	дисперсия, интерференция и	
	дифракция света; излучение и	
	поглощение света атомами,	
	линейчатые спектры; фотоэффект;	
	радиоактивность;	
OK 01	- приводить примеры опытов,	- смысл физических величин:
OK 02.	иллюстрирующих, что	перемещение, скорость, ускорение,
OK 03.	наблюдения и эксперимент служат	масса, сила, давление, импульс,
OK 04.	основой для выдвижения гипотез	работа, мощность, механическая
OK 05.	и построения научных теорий;	энергия, момент силы, период,
OK 07.	эксперимент позволяет проверить	частота, амплитуда колебаний, длина
OK 08.	истинность теоретических	волны, внутренняя энергия, средняя
OK 09.	выводов; физическая теория дает	кинетическая энергия частиц
OK 10.	возможность объяснять явления	вещества, абсолютная температура,
	природы и научные факты;	количество теплоты, удельная
	физическая теория позволяет	теплоемкость, удельная теплота
	предсказывать еще неизвестные	парообразования, удельная теплота
	явления и их особенности, при	плавления, удельная теплота сгорания,
	объяснении природных явлений	элементарный электрический заряд,
	используются физические модели;	напряженность электрического поля,
	один и тот же природный объект	разность потенциалов,
	или явление можно исследовать на	электроемкость, энергия
	основе использования разных	электрического поля, сила
	моделей; законы физики и	электрического тока, электрическое
	физические теории имеют свои	напряжение, электрическое
	определенные границы	сопротивление, электродвижущая
	применимости;	сила, магнитный поток, индукция
		магнитного поля, индуктивность,
		энергия магнитного поля, показатель
OIC 01	1	преломления, оптическая сила линзы;
OK 01	- описывать фундаментальные	- смысл физических законов,
OK 02.	опыты, оказавшие существенное	принципов и постулатов
OK 03.	влияние на развитие физики;	(формулировка, границы
OK 04.	- применять полученные знания	применимости): законы динамики
OK 05.	для решения физических задач;	Ньютона, принципы суперпозиции и
OK 07.	- определять характер физического	относительности, закон Паскаля,
OK 08.	процесса по графику, таблице,	закон Архимеда, закон Гука, закон

OK 09.	формуле; продукты ядерных	всемирного тяготения, законы
OK 10.	реакций на основе законов	сохранения энергии, импульса и
	сохранения электрического заряда	электрического заряда, основное
	и массового числа;	уравнение кинетической теории газов,
	- измерять скорость, ускорение	уравнение состояния идеального газа,
	свободного падения, массу тела,	законы термодинамики, закон Кулона,
	плотность вещества, силу, работу,	закон Ома для полной цепи, закон
	мощность, энергию, коэффициент	Джоуля-Ленца, закон
	трения скольжения, влажность	электромагнитной индукции, законы
	воздуха, удельную теплоемкость	отражения и преломления света,
	вещества, удельную теплоту	постулаты специальной теории
	плавления льда, электрическое	относительности, закон связи массы и
	сопротивление, ЭДС и внутреннее	энергии, законы фотоэффекта,
	сопротивление источника тока,	постулаты Бора, закон радиоактивного
	показатель преломления вещества,	распада; основные положения
	-	излучаемых физических теорий и их
	оптическую силу линзы, длину световой волны; представлять	1
	/ 1	роль в формировании научного
	результаты измерений с учетом их	мировоззрения;
OK 01	погрешностей; - приводить примеры	- вклад российских и зарубежных
OK 01 OK 02.	1 1 1	
OK 02. OK 03.	практического применения	
OK 03. OK 04.	физических знаний: законов	влияние на развитие физики.
OK 04. OK 05.	механики, термодинамики и	
OK 05. OK 06.	электродинамики в энергетике;	
OK 00. OK 07.	различных видов	
OK 07. OK 08.	электромагнитных излучений для	
	развития радио- и	
OK 09. OK 10.	телекоммуникаций; квантовой	
	физики в создании ядерной	
OK 11.	энергетики, лазеров;	
	- воспринимать и на основе полученных знаний	
	"	
	самостоятельно оценивать	
	информацию, содержащуюся в	
	СМИ, научно-популярных	
	статьях; использовать новые	
	информационные технологии для поиска, обработки и	
	, 1	
	предъявления информации	
	по физике в компьютерных базах данных и сетях (сети Интернета).	
	1 · · · · · · · · · · · · · · · · · · ·	
	Использовать приобретенные	
	знания и умения в практической	
	деятельности и повседневной	
	жизни для: - обеспечения безопасности	
	жизнедеятельности в процессе	
	использования транспортных	
	средств, бытовых	
	электроприборов, средств радио- и	
	телекоммуникационной связи;	
	- анализа и оценки влияния на	

организм человека и другие
организмы загрязнения
окружающей среды;
- рационального
природопользования и защиты
окружающей среды;
- определения собственной
позиции по отношению к
экологическим проблемам и
поведению в природной среде;
- приобретения практического
опыта деятельности,
предшествующей
профессиональной, в основе
которой лежит данный учебный
предмет.

Рекомендуемое количество часов на освоение программы учебной дисциплины: максимальная учебная нагрузка обучающегося <u>372</u>часа в том числе: обязательная аудиторная учебная нагрузка обучающегося <u>248</u> часов;

2. Структура и содержание учебной дисциплины. Содержание учебной дисциплины физика Углубленный уровень

Физика и естественно-научный метод познания природы

Физика — фундаментальная наука о природе. Научный метод познания мира. Взаимосвязь между физикой и другими естественными науками. Методы научного исследования физических явлений. Погрешности измерений физических величин. Моделирование явлений и процессов природы. Закономерность и случайность. Границы применимости физического закона. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

Механика

Предмет и задачи классической механики. Кинематические характеристики механического движения. Модели тел и движений. Равноускоренное прямолинейное движение, свободное падение. движение тела, брошенного под углом к горизонту. Движение точки по окружности. Поступательное и вращательное движение твердого тела.

Взаимодействие тел. Принцип суперпозиции сил. Инерциальная система отсчета. Законы механики Ньютона. Законы Всемирного тяготения, Гука, сухого трения. Движение небесных тел и их искусственных спутников. Явления, наблюдаемые в неинерциальных системах отсчета.

Импульс силы. Закон изменения и сохранения импульса. Работа силы. Закон изменения и сохранения энергии.

Равновесие материальной точки и твердого тела. Условия равновесия твердого тела в инерциальной системе отсчета. Момент силы. Равновесие жидкости и газа. Движение жидкостей и газов. Закон сохранения энергии в динамике жидкости и газа.

Механические колебания и волны. Амплитуда, период, частота, фаза колебаний. Превращения энергии при колебаниях. Вынужденные колебания, резонанс.

Поперечные и продольные волны. Энергия волны. Интерференция и дифракция волн. Звуковые волны.

Молекулярная физика и термодинамика

Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики.

Экспериментальные доказательства МКТ. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Связь между давлением и средней кинетической энергией поступательного теплового движения молекул идеального газа.

Модель идеального газа в термодинамике: уравнение Менделеева-Клапейрона, выражение для внутренней энергии. Закон Дальтона. Газовые законы.

Агрегатные состояния вещества. Фазовые переходы. Преобразование энергии в фазовых переходах. Насыщенные и ненасыщенные пары. Влажность воздуха. Модель строения жидкостей. Поверхностное натяжение. Модель строения твердых тел. Механические свойства твердых тел.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Адиабатный процесс. Второй закон термодинамики.

Преобразования энергии в тепловых машинах. КПД тепловой машины. Цикл Карно. Экологические проблемы теплоэнергетики.

Электродинамика

Предмет и задачи электродинамики. Электрическое взаимодействие. Закон сохранения электрического заряда. Закон Кулона. Напряженность и потенциал электростатического поля. Принцип суперпозиции электрических полей. Разность потенциалов. Проводники и диэлектрики в электростатическом поле. Электрическая емкость. Конденсатор. Энергия электрического поля.

Постоянный электрический ток. Электродвижущая сила (ЭДС). Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, полупроводниках, газах и вакууме. Плазма. Электролиз. Полупроводниковые приборы. Сверхпроводимость.

Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции магнитных полей. Магнитное поле проводника с током. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца.

Поток вектора магнитной индукции. Явление электромагнитной индукции. Закон электромагнитной индукции. ЭДС индукции в движущихся проводниках. Правило Ленца. Явление самоиндукции. Индуктивность. Энергия электромагнитного поля. Магнитные свойства вещества.

Электромагнитные колебания. Колебательный контур. Свободные электромагнитные колебания. Вынужденные электромагнитные колебания. Резонанс. Переменный ток. Конденсатор и катушка в цепи переменного тока. Производство, передача и потребление электрической энергии. Элементарная теория трансформатора.

Электромагнитное поле. Вихревое электрическое поле. Электромагнитные волны. Свойства электромагнитных волн. Диапазоны электромагнитных излучений и их практическое применение. Принципы радиосвязи и телевидения.

Геометрическая оптика. Прямолинейное распространение света в однородной среде. Законы отражения и преломления света. Полное внутреннее отражение. Оптические приборы.

Волновые свойства света. Скорость света. Интерференция света. Когерентность. Дифракция света. Поляризация света. Дисперсия света. Практическое применение электромагнитных излучений.

Основы специальной теории относительности

Инвариантность модуля скорости света в вакууме. Принцип относительности Эйнштейна. Пространство и время в специальной теории относительности. Энергия и импульс свободной частицы. Связь массы и энергии свободной частицы. Энергия покоя.

Квантовая физика. Физика атома и атомного ядра

Предмет и задачи квантовой физики.

Тепловое излучение. Распределение энергии в спектре абсолютно черного тела.

Гипотеза М. Планка о квантах. Фотоэффект. Опыты А.Г. Столетова, законы фотоэффекта. Уравнение А. Эйнштейна для фотоэффекта.

Фотон. Опыты П.Н. Лебедева и С.И. Вавилова. Гипотеза Л. де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Дифракция электронов. Давление света. Соотношение неопределенностей Гейзенберга.

Модели строения атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Н. Бора. Спонтанное и вынужденное излучение света.

Состав и строение атомного ядра. Изотопы. Ядерные силы. Дефект массы и энергия связи ядра.

Закон радиоактивного распада. Ядерные реакции, реакции деления и синтеза. Цепная реакция деления ядер. Ядерная энергетика. Термоядерный синтез.

Элементарные частицы. Фундаментальные взаимодействия. Ускорители элементарных частиц.

Строение Вселенной

Применимость законов физики для объяснения природы космических объектов. Солнечная система. Звезды и источники их энергии. Классификация звезд. Эволюция Солнца и звезд.

Галактика. Другие галактики. Пространственно-временные масштабы наблюдаемой Вселенной. Представление об эволюции Вселенной. Темная материя и темная энергия.

Объем учебной дисциплины и виды учебной работы

Вид учебной работы		Трудоемкость, ч.				
		семестр				
	1	2	3	4	всего	
Максимальная учебная нагрузка	43	137	104	88	372	
Обязательная аудиторная учебная нагрузка (всего)	21	95	68	64	248	
в том числе:						
теоретические занятия	9	68	49	46	172	
контрольная работа	2	3	2	1	8	
лабораторные работы	5	7	5	2	19	
практические занятия	5	17	12	15	49	
консультация		15		15	30	
Самостоятельная работа	22	42	36	24	124	
Промежуточная аттестация в форме			экзамен			

4. Тематическое планирование учебной дисциплины

Наименование разделов	Содержание учебного материала, лабораторные работы и практикумы, самостоятельная работа студентов	Объем часов	Коды компетенций и личностных результатов формированию которых способствует элемент программы
1	2	3	
Раздел 1. Физика и естественно-научный метод познания природы		4	
	Физика — фундаментальная наука о природе. Научный метод познания мира. Взаимосвязь между физикой и другими естественными науками. Методы научного исследования физических явлений. Погрешности измерений физических величин. Моделирование явлений и процессов природы. Закономерность и случайность. Границы применимости физического закона. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.	3	OK 07.
	Контрольная работа №1	1	
	Самостоятельная работа. Научный метод познания мира. Физические явления	4	
Раздел 2. Механика.		27	
	Предмет и задачи классической механики. Кинематические характеристики механического движения. Модели тел и движений. Равноускоренное прямолинейное движение, свободное падение. движение тела, брошенного под углом к горизонту. Движение точки по окружности. Поступательное и вращательное движение твердого тела. Взаимодействие тел. Принцип суперпозиции сил. Инерциальная система отсчета. Законы механики Ньютона. Законы Всемирного тяготения, Гука, сухого трения. Движение небесных тел и их искусственных спутников.	16	OK 01 OK 02. OK 03. OK 04. OK 05. OK 06. OK 07. OK 08.

Явления, наблюдаемые в неинерциальных системах отсчета.		OK 09.
Импульс силы. Закон изменения и сохранения импульса. Работа силы.		
Закон изменения и сохранения энергии.		
Равновесие материальной точки и твердого тела. Условия равновесия		
твердого тела в инерциальной системе отсчета. Момент силы. Равновесие		
жидкости и газа. Движение жидкостей и газов. Закон сохранения энергии		
в динамике жидкости и газа.		
Механические колебания и волны. Амплитуда, период, частота, фаза		
колебаний. Превращения энергии при колебаниях. Вынужденные		
колебания, резонанс.		
Поперечные и продольные волны. Энергия волны. Интерференция и		
дифракция волн. Звуковые волны.		
Контрольная работа №2 «Механическое движение»	1	
Практическое занятие №1 «Наблюдение механических явлений в	1	
инерциальных и неинерциальных системах отсчета»		
Практическое занятие №2 «Исследование движения тела, брошенного	1	
горизонтально		
Практическое занятие №3,4 Проверка гипотезы (в том числе имеются	1	
неверные): «При движении бруска по наклонной плоскости время		
перемещения на определенное расстояния тем больше, чем больше		
масса бруска»		
Практическое занятие №5 «Исследование качения цилиндра по	1	
наклонной плоскости»		
Практическое занятие №6 Проверка гипотезы: « При затухании	1	
колебаний амплитуда обратно пропорциональна времени»		
Лабораторная работа № 1 «Измерение мгновенной скорости с	1	
использованием секундомера»		
Лабораторная работа № 2 «Сравнение масс (по взаимодействию)»	1	
Лабораторная работа № 3 «Измерение ускорения свободного	1	
падения»		
Лабораторная работа № 4 «Измерение сил в механике»	1	
Лабораторная работа № 5 «Определение энергии и импульса по	1	
тормозному пути»		
Самостоятельная работа. Виды движения по форме траектории.	23	
Виды движения по значению скорости. Графическое изображение		

Раздел 3. Молекулярная физика и термодинамика	зависимости пути от времени. Решение задач. Открытия великого Галилео Галилея Движение тела, брошенного под углом к горизонту. Решение задач на применение закона всемирного тяготения. Реактивные двигатели. Успехи Российских ученых в освоении космоса. Плечо силы Решение задач. Автоколебательная система. Применение дифракции и интерференции. Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики. Экспериментальные доказательства МКТ. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Связь между давлением и средней кинетической энергией поступательного теплового движения молекул идеального газа. Модель идеального газа. Модель идеального газа в термодинамике: уравнение Менделеева—Клапейрона, выражение для внутренней энергии. Закон Дальтона. Газовые законы. Агрегатные состояния вещества. Фазовые переходы. Преобразование энергии фазовых переходах. Насыщенные и	32 20	OK 02. OK 03. OK 04. OK 05. OK 06. OK 07. OK 08. OK 09.
	ненасыщенные пары. Влажность воздуха. Модель строения жидкостей. Поверхностное натяжение. Модель строения твердых тел. Механические свойства твердых тел. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Адиабатный процесс. Второй закон термодинамики. Преобразования энергии в тепловых машинах. КПД тепловой машины. Цикл Карно. Экологические проблемы теплоэнергетики. Контрольная работа №3 «Молекулярная физика» Контрольная работа №4 «Молекулярная физика» Практическое занятие №7,8 «Исследование изопроцессов» Практическое занятие №10,11 «Исследование движения броуновской частицы (по трекам Перрена)» Практическое занятие №12,13 «Исследование остывания воды»	1 1 2 2	

	Лабораторная работа № 6«Измерение термодинамических параметров	2	
	rasa»	1	
	Лабораторная работа № 7«Измерение удельной теплоты плавления	I	
	льда»	1	
	Лабораторная работа № 8 «Оценка сил взаимодействия молекул	1	
	(методом отрыва капель)»		
	Самостоятельная работа. Графическое сравнение абсолютной шкалы и	8	
	шкалы Цельсия. Графическое изображение газовых законов. Свойства		
	воды. Значение влажности воздуха для человека. Механические свойства		
	– износостойкость, долговечность. Составляющие внутренней энергии.		
	Решение задач. Тепловые двигатели и окружающая среда.		
Раздел 4. Электродинамика		95	
	Предмет и задачи электродинамики. Электрическое взаимодействие.	65	ОК 01
	Закон сохранения электрического заряда. Закон Кулона. Напряженность и		OK 02.
	потенциал электростатического поля. Принцип суперпозиции		OK 03.
	электрических полей. Разность потенциалов. Проводники и диэлектрики в		OK 04.
	электростатическом поле. Электрическая емкость. Конденсатор. Энергия		OK 05.
	электрического поля.		OK 06.
	Постоянный электрический ток. Электродвижущая сила (ЭДС).		OK 07.
	Закон Ома для полной электрической цепи. Электрический ток в		OK 08.
	металлах, электролитах, полупроводниках, газах и вакууме. Плазма.		OK 09.
	Электролиз. Полупроводниковые приборы. Сверхпроводимость.		OK 10.
	Магнитное поле. Вектор магнитной индукции. Принцип		
	суперпозиции магнитных полей. Магнитное поле проводника с током.		
	Действие магнитного поля на проводник с током и движущуюся		
	заряженную частицу. Сила Ампера и сила Лоренца.		
	Поток вектора магнитной индукции. Явление электромагнитной		
	индукции. Закон электромагнитной индукции. ЭДС индукции в		
	движущихся проводниках. Правило Ленца. Явление самоиндукции.		
	Индуктивность. Энергия электромагнитного поля. Магнитные свойства		
	вещества.		
	Электромагнитные колебания. Колебательный контур. Свободные		
	электромагнитные колебания. Вынужденные электромагнитные		
	колебания. Резонанс. Переменный ток. Конденсатор и катушка в цепи		
	переменного тока. Производство, передача и потребление электрической		

энергии. Элементарная теория трансформатора.		
Электромагнитное поле. Вихревое электрическое поле.		
Электромагнитные волны. Свойства электромагнитных волн. Диапазоны		
электромагнитных излучений и их практическое применение. Принципы		
радиосвязи и телевидения.		
Геометрическая оптика. Прямолинейное распространение света в		
однородной среде. Законы отражения и преломления света. Полное		
внутреннее отражение. Оптические приборы.		
Волновые свойства света. Скорость света. Интерференция света.		
Когерентность. Дифракция света. Поляризация света. Дисперсия света.		
Практическое применение электромагнитных излучений.		
Контрольная работа №5 «Электродинамика»	1	
Контрольная работа №6 «Электродинамика»	1	
Практическое занятие №14,15 «Исследование нагревания воды	2	
нагревателем небольшой мощности»		
Практическое занятие №16,17 «Наблюдение явления	2	
электромагнитной индукции»		
Практическое занятие №18,19 «Исследование зависимости	2	
напряжения на полюсах источника тока от силы тока в цепи»		
Практическое занятие №20,21 «Исследование явления	2	
электромагнитной индукции»		
Практическое занятие №22 Проверка гипотезы: « Напряжение при	2	
последовательном включении лампочки и резистора.»		
Практическое занятие №23 «Конструирование электродвигателя»	1	
Практическое занятие №24,25 «Конструирование трансформатора»	2	
Практическое занятие №26,27 «Наблюдение волновых свойств света:	2	
дифракция, интерференция, поляризация»		
Практическое занятие №28 «Исследование зависимости угла	1	
преломления от угла падения»		
Практическое занятие №29 «Исследование зависимости расстояния	1	
от линзы до изображения от расстояния от линзы до предмета»		
Практическое занятие №30,31 Проверка гипотезы: « Угол	2	
преломления прямо пропорционален углу падения»		
Практическое занятие №32,33 Проверка гипотезы: « При плотном	2	1
сложении двух линз оптические силы складываются»		
	· · · · · · · · · · · · · · · · · · ·	

			1
	Лабораторная работа № 9 «Измерение ЭДС источника тока»	2	
	Лабораторная работа № 10 «Измерение внутреннего сопротивления	1	
	источника тока»		
	Лабораторная работа № 11 «Измерение напряженности вихревого	1	
	электрического поля (при наблюдении электромагнитной индукции)»		
	Лабораторная работа № 12 «Определение показателя преломления	1	
	среды»		
	Лабораторная работа № 13 «Измерение фокусного расстояния	1	
	собирающей и рассеивающей линзы»		
	Лабораторная работа №14 «Определение длины световой волны»	1	
	Самостоятельная работа. Открытия Кулона. Линии напряженности	27	
	электрического поля. Применение диэлектриков. Применение		
	конденсаторов. Открытия Ома. Решение задач. Условия существования		
	электрического тока. Параметры электрического тока. Применение		
	полупроводников. Открытия Фарадея. Решение задач. Бытовые		
	электроизмеритель-ные приборы. Решение задач. Применение		
	ферромагнетиков. Применение электромагнитных колебаний. Проявление		
	электрического резонанса. Использование переменного тока. Схема линий		
	электропередач. Сложная природа света. Виды электромагнитных		
	излучений. Применение интерференции и дифракции света. Применение		
	поляризованного света. Применение дисперсии света. Применение линз.		
Раздел 5. Основы		6	
специальной теории			
относительности			
	Инвариантность модуля скорости света в вакууме. Принцип	6	OK 03.
	относительности Эйнштейна. Пространство и время в специальной теории		OK 04.
	относительности. Энергия и импульс свободной частицы. Связь массы и		
	энергии свободной частицы. Энергия покоя.		
	Самостоятельная работа. Теория относительности «ЗА» и «ПРОТИВ»	2	+
Раздел 6. Квантовая		44	
		44	
физика. Физика атома и			
атомного ядра			

Предмет и задачи квантовой физики.	32	OK 02.
Тепловое излучение. Распределение энергии в спектре абсолютно		OK 03.
черного тела.		OK 04.
Гипотеза М. Планка о квантах. Фотоэффект. Опыты		OK 05.
А.Г. Столетова, законы фотоэффекта. Уравнение А. Эйнштейна для		OK 06.
фотоэффекта.		OK 07.
Фотон. Опыты П.Н. Лебедева и С.И. Вавилова. Гипотеза Л. де Бройля о		OK 08.
волновых свойствах частиц. Корпускулярно-волновой дуализм.		OK 09.
Дифракция электронов. Давление света. Соотношение неопределенностей		
Гейзенберга.		
Модели строения атома. Объяснение линейчатого спектра водорода на		
основе квантовых постулатов Н. Бора. Спонтанное и вынужденное		
излучение света.		
Состав и строение атомного ядра. Изотопы. Ядерные силы. Дефект		
массы и энергия связи ядра.		
Закон радиоактивного распада. Ядерные реакции, реакции деления и		
синтеза. Цепная реакция деления ядер. Ядерная энергетика.		
Термоядерный синтез.		
Элементарные частицы. Фундаментальные взаимодействия. Ускорители		
элементарных частиц.		
Контрольная работа № 7 «Квантовая физика»	1	
Практическое занятие №34 «Наблюдение спектров»	1	
Практическое занятие №35,36 «Исследование спектра водорода»	2	
Практическое занятие №37,38 «Применение изотопов»	2	
Практическое занятие №39,40 «Использование ядерной энергии»	2	
Практическое занятие №41,42 «Не традиционные источники	2	
электрической энергии»		
Лабораторная работа № 15 «Определение импульса и энергии	1	
частицы при движении в магнитном поле (по фотографиям).»		
Лабораторная работа № 16 «Определение импульса и энергии	1	
частицы при движении в магнитном поле (по фотографиям).»		
Самостоятельная работа. Виды спектров. Применение фотоэффекта.	12	
Модель атома Томсона. Применение лазерного излучения. Опыт		
Резерфорда. Дозиметрические приборы. Применение термоядерного		

Раздел 7. Строение		26	
Вселенной			
	Применимость законов физики для объяснения природы космических	20	OK 04.
	объектов. Солнечная система. Звезды и источники их энергии.		OK 05.
	Классификация звезд. Эволюция Солнца и звезд.		OK 06.
	Галактика. Другие галактики. Пространственно-временные масштабы		OK 07.
	наблюдаемой Вселенной. Представление об эволюции Вселенной. Темная		OK 08.
	материя и темная энергия. Законы физики и космические аппараты		
	Достижения России в освоении космоса.		
	Практическое занятие №43,44 « Исследование движения двойных	2	
	звезд (по печатным материалам).»		
	Практическое занятие №45,46 «Вечерние наблюдения звезд, Луны и	2	
	планет в телескоп или бинокль»		
	Лабораторная работа № 17 «Определение периода обращения	2	
	двойных звезд (печатные материалы).»		
	Самостоятельная работа. Мифы и легенды о солнечной системе.	6	
	Достижения российских ученых в освоении космоса. Космос – далекий и		
	близкий		
Раздел 8. Повторение		12	
	Механика. Молекулярная физика и термодинамика. Электродинамика.	8	OK 02.
	Квантовая физика. Физика атома и атомного ядра		OK 03.
	Практическое занятие №46,47,48 «Электрические цепи»	3	OK 04.
	Контрольная работа №8	1	OK 05.
			— OK 06.
	Самостоятельная работа. Решение типовых задач	8	OK 07.
			OK 08.
			OK 09.
			OK 10.
			OK 11
	Итого	372 часа	
	ЭКЗАМЕН		

Календарно – тематический план

№ п/п	Наименование разделов, тем 2	№ урока	Коли честв о часов	Вопросы для самостоятельного изучения	Коли честв о часов	Вид учебного занятия 5	Наглядные пособия и оборудование 6	Домашнее задание 7
1		3	4	Первый семестр		<u> </u>	U	1
				первыи семестр				
	Φι	изика и	естестве	нно-научный метод п	ознания	природы		
1	Входной контроль. Контрольная работа №1	1	1	Ţ.		Сам. работа	тесты	
2	Физика — фундаментальная наука о природе. Научный метод познания мира. Взаимосвязь между физикой и другими естественными науками.	2	1	Научный метод познания мира	2	Теоретическое	ПК, проектор, БП-банк презентаций ИУ-интернет урок ЭУ-электронный учебник	лекция
3	Методы научного исследования физических явлений. Погрешности измерений физических величин. Моделирование явлений и процессов природы. Закономерность и случайность Границы применимости физического закона. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.	3,4	2	Физические явления	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	лекция
	ا د د ا	1		Механика	1			

4	Предмет и задачи классической механики. Кинематические характеристики механического движения. Модели тел и движений. Равноускоренное прямолинейное движение,	5,6	2	Виды движения по форме траектории. Виды движения по значению скорости	4	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	Г.Я.Мякишев П. 1,2,4,7
5	Практическое занятие №1 «Наблюдение механических явлений в инерциальных и неинерциальных системах отсчета»	7	1	Механических явлений	2	Практическое	ПК, проектор, БП, ИУ, ЭУ	сообщение
6	Лабораторная работа № 1 «Измерение мгновенной скорости с использованием секундомера»	8	1	Мгновенная скорость	2	Практическое	ПК, проектор, БП, ИУ, ЭУ	Л.Р.№1
7	Лабораторная работа № 2 «Сравнение масс (по взаимодействию)»	9	1	Масса тела-мера инертности	2	Практическое	ПК, проектор, БП, ИУ, ЭУ	Л.Р.№2
	Лабораторная работа № 3 «Измерение ускорения свободного падения»	10	1	Ускорение свободного падения	4	Практическое	ПК, проектор, БП, ИУ, ЭУ	Л.Р. №1
8	Свободное падение. движение тела, брошенного под углом к горизонту. Движение точки по окружности.	11	1	Графическое изображение зависимости пути от времени.	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 15,16,17
9	Практическое занятие №2 «Исследование движения тела, брошенного горизонтально	12						
10	Поступательное и вращательное движение твердого тела. Взаимодействие тел. Принцип суперпозиции сил.	13	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 18,19,20,21
	Инерциальная система отсчета. Законы механики Ньютона. Законы Всемирного тяготения, Гука, сухого трения.	14	2	Открытия великого Галилео Галилея Движение тела, брошенного под углом к горизонту.	1	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 20-26

	Лабораторная работа № 4	15	1			Практическое	ПК, проектор,	Л.Р.№4
	«Измерение сил в механике»	1.0	1			17	БП, ИУ, ЭУ	H D M F
	Лабораторная работа № 5	16	1			Практическое	ПК, проектор,	Л.Р.№5
	«Определение энергии и импульса						БП, ИУ, ЭУ	
	по тормозному пути»							
	Практическое занятие №3,4	17,18	2					
	Проверка гипотезы (в том числе							
	имеются неверные): «При							
	движении бруска по наклонной							
	плоскости время перемещения на							
	определенное расстояния тем							
	больше, чем больше масса бруска»	<u> </u>						
	Практическое занятие №5	19	1					
	«Исследование качения цилиндра							
	по наклонной плоскости»							
	Движение небесных тел и их	20	1	Решение задач на	1	Теоретическое	ПК, проектор,	лекция
	искусственных спутников. Явления,			применение закона			БП, ИУ, ЭУ	
	наблюдаемые в неинерциальных			всемирного				
	системах отсчета.			тяготения.				
	Контрольная работа №2	21	1					
	«Механическое движение»							
	Итого:				•			1
	Теоретические занятия	9						
	Лабораторных работ	5						
	Контрольных работ	2						
	Практических занятий	5						
	Самостоятельная работа	22						
	- Camberon Communication provide							
				Второй семестр				
15	Импульс силы. Закон изменения и	22	1	Реактивные	1	Теоретическое	ПК, проектор,	П 39-42
	сохранения импульса. Работа силы			двигатели.		•	бП, ИУ, ЭУ	
				Успехи Российских				
				ученых в освоении				

	Закон изменения и сохранения энергии. Равновесие материальной точки и твердого тела	23,24	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 39-42
16	Условия равновесия твердого тела в инерциальной системе отсчета. Момент силы	25,26	2	Плечо силы Решение задач	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 52-54
	Равновесие жидкости и газа. Движение жидкостей и газов. Закон сохранения энергии в динамике жидкости и газа	27,28	2					
17	Механические колебания и волны. Амплитуда, период, частота, фаза колебаний. Превращения энергии при колебаниях. Вынужденные колебания, резонанс.	29.30	2	Автоколебательная система Решение задач	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П18-26
18	Поперечные и продольные волны. Энергия волны. Интерференция и дифракция волн. Звуковые волны	31,32	2	Применение дифракции и интерференции	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П18-26
19	Практическое занятие №6 Проверка гипотезы: «При затухании колебаний амплитуда обратно пропорциональна времени»	31	1			Практическое	ПК, проектор, БП, ИУ, ЭУ	сообщение
		M	олекул	ярная физика и термод	инамик	:a		
20	Предмет и задачи молекулярно- кинетической теории (МКТ) и термодинамики.	32	1			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 55-58
21	Экспериментальные доказательства МКТ. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа.	33,34	2	Графическое сравнение абсолютной шкалы и шкалы Цельсия	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 55-58
22	Давление газа. Связь между давлением и средней кинетической	35,36	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 67,68

					энергией поступательного теплового	
					движения молекул идеального газа.	
	Теоретическо		1	37 1	Модель идеального газа в	23
Б:					термодинамике: уравнение	
					Менделеева-Клапейрона, выражение	
					для внутренней энергии. Закон	
					Дальтона.	
работа	Сам. работа		1	38 1	Контрольная работа №3	24
					«Молекулярная физика»	
ическое ПК,	Теоретическое	2	2 Графическое	39,40 2	Газовые законы. Агрегатные	25
Б:			изображение		состояния вещества. Фазовые	
			газовых законов		переходы. Преобразование энергии в	
					фазовых переходах.	
ическое ПК,	Практическое		2	41,42 2	Практическое занятие №7,8	26
Б					«Исследование изопроцессов»	
ическое ПК,	Практическое		2	43,44 2	Лабораторная работа № 6	27
Б					«Измерение термодинамических	
					параметров газа»	
ическое ПК,	Практическое		2	45 2	Лабораторная работа № 7	28
Б	1			46	Измерение удельной теплоты	
					плавления веществаа»	
ическое ПК,	Теоретическое	2	2 Свойства воды.	47,48 2	Насыщенные и ненасыщенные пары.	30
Б			Значение влажности	,	Влажность воздуха. Модель строения	
			воздуха для человека		жидкостей. Поверхностное	
					натяжение.	
ическое ПК,	Практическое		1	49 1	Практическое занятие №9	31
Б	1				«Исследование движения	
					броуновской частицы (по трекам	
					\ <u>`</u>	
ическое ПК,	Теоретическое	2	1 Механические	50 1	11 /	32
Б			свойства –		1	
			износостойкость,			
ическое ПК.	Теоретическое		2	51,52 2	Механические свойства твердых тел.	33
					<u>^</u>	
ическое ПК,	Теоретическо	2	свойства – износостойкость, долговечность		броуновской частицы (по трекам Перрена)» Модель строения твердых тел Механические свойства твердых тел. Внутренняя энергия.	

31	Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики.	53,54	2	Составляющие внутренней энергии	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 75-78
34	Адиабатный процесс. Второй закон термодинамики. Преобразования энергии в тепловых машинах. КПД тепловой машины. Цикл Карно.	55,56	2	Решение задач	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 80, 81
35	Практическое занятие №10,11 «Исследование изохорного процесса и оценка абсолютного нуля»	57,58	2			Практическое	ПК, проектор, БП, ИУ, ЭУ	сообщение
36	Практическое занятие №12,13 «Исследование остывания воды»	59,60	2			Практическое	ПК, проектор, БП, ИУ, ЭУ	сообщение
37	Лабораторная работа №8 «Оценка сил взаимодействия молекул (методом отрыва капель)»	61	1			Практическое	ПК, проектор, БП, ИУ, ЭУ	сообщение
38	Экологические проблемы теплоэнергетики	62	1	Тепловые двигатели и окружающая среда	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	лекция
39	Контрольная работа №4 «Молекулярная физика»	63	1			Сам. работа	тесты	тесты
				Электродинамика				
40	Предмет и задачи электродинамики. Электрическое взаимодействие	64	1			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 83-86
41	Закон сохранения электрического заряда Закон Кулона	65,66	2	Открытия Кулона	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 87-91
42	. Напряженность и потенциал электростатического поля.Принцип суперпозиции электрических полей. Разность потенциалов.	67,68	2	Линии напряженности электрического поля	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 87-91
43	Проводники и диэлектрики в электростатическом поле.	69,70	2	Применение диэлектриков	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 99-101
44	Электрическая емкость. Конденсатор.	71,72	2	Применение конденсаторов	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 99-101

45	Энергия электрического поля. Постоянный электрический ток.	73,74	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 104-107
46	Электродвижущая сила (ЭДС). Закон Ома для полной электрической цепи.	75,76	2	Открытия Ома. Решение задач	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 12-14
47	Практическое занятие №14,15 «Исследование нагревания воды нагревателем небольшой мощности»	77,78	2			Практическое	ПК, проектор, БП, ИУ, ЭУ	сообщение
48	Электрический ток в металлах, Электрический ток в электролитах.	79,80	2	Условия существования электрического тока. Параметры электрического тока	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 110,114,119
49	Электролиз Электрический ток в полупроводниках,	81,82	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 113-115,123
50	Электрический ток в газах и вакууме. Плазма. Полупроводниковые приборы.	83,84	2	Применение полупроводников	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	лекция
51	Сверхпроводимость. Магнитное поле. Вектор магнитной индукции.	85,86	2	Открытия Фарадея. Решение задач	1	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	лекция
52	Принцип суперпозиции магнитных полей.	87,88	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 1-4
53	Лабораторная работа № 9 «Измерение ЭДС источника тока»	89,90	2			Практическое	ПК, проектор, БП, ИУ, ЭУ	Л.Р. №3
54	Практическое занятие №16,17 «Наблюдение явления электромагнитной индукции»	91,92	2			Практическое	ПК, проектор, БП, ИУ, ЭУ	сообщение
55	Практическое занятие №18,19 «Исследование зависимости напряжения на полюсах источника тока от силы тока в цепи»	93, 94	2			Практическое	ПК, проектор, БП, ИУ, ЭУ	сообщение
56	Магнитное поле проводника с током.	95,96	2	Бытовые электроизмеритель- ные приборы	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 8-10
57	Действие магнитного поля на	97,98	2			Теоретическое	ПК, проектор,	П 8-10

	проводник с током и движущуюся заряженную частицу.						БП, ИУ, ЭУ	
58	Сила Ампера и сила Лоренца.	99, 100	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 8-10
59	Поток вектора магнитной индукции. Явление электромагнитной индукции. Закон электромагнитной индукции	101 102	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 2-5
61	ЭДС индукции в движущихся проводниках	103 104	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 11-15
62	. Правило Ленца. Явление самоиндукции.	105 106	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 11-15
63	Индуктивность. Энергия электромагнитного поля. Магнитные свойства вещества.	107 108	2	Применение ферромагнетиков	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 11-15
64	Практическое занятие №20,21 «Исследование явления электромагнитной индукции»	109 110	2			Практическое	ПК, проектор, БП, ИУ, ЭУ	сообщение
62	Практическое занятие №22 Проверка гипотезы: «Напряжение при последовательном включении лампочки и резистора.»	111	1			Практическое	ПК, проектор, БП, ИУ, ЭУ	сообщение
65	. Свободные электромагнитные колебания. Вынужденные электромагнитные колебания. Резонанс.	112	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 27-30
	Переменный ток. Конденсатор и катушка в цепи переменного тока.	113 114	2	Использование переменного тока	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 31-35
67	Электромагнитные колебания. Колебательный контур	115	1					
	Контрольная работа №5 «Электродинамика»	116	1			Сам. работа	тесты	Тесты
	Итого:							
	Теоретические занятия	68	1					
	Лабораторных работ	7						

Контрольных работ	3
Практических занятий	17
Самостоятельная работа	42

Третий семестр

	_							
71	Производство, передача и	117,	2	Схема линий	3	Теоретическое	ПК, проектор,	П 31-35
	потребление электрической энергии	118		электропередач			БП, ИУ, ЭУ	
	Практическое занятие №23	119	1			Практическое	ПК, проектор,	сообщение
	«Конструирование						БП, ИУ, ЭУ	
	электродвигателя»							
	Лабораторная работа № 1 0	120	1			Практическое	ПК, проектор,	Л.Р. №4
	«Измерение внутреннего						БП, ИУ, ЭУ	
	сопротивления источника тока»							
72	Элементарная теория	121	2			Теоретическое	ПК, проектор,	П 31-35
	трансформатора	122					БП, ИУ, ЭУ	
73	Практическое занятие №24,25	123	2			Практическое	ПК, проектор,	сообщение
	«Конструирование	124					БП, ИУ, ЭУ	
	трансформатора»							
74	Электромагнитное поле. Вихревое	125	2	Решение задач	4	Теоретическое	ПК, проектор,	П 16,17,12
	электрическое поле.	126					БП, ИУ, ЭУ	
75	Электромагнитные волны. Свойства	127	2			Теоретическое	ПК, проектор,	П 16,17,12
	электромагнитных волн.	128					БП, ИУ, ЭУ	
76	Лабораторная работа № 11	129	1			Практическое	ПК, проектор,	Л.Р. №5
	«Измерение напряженности						БП, ИУ, ЭУ	
	вихревого электрического поля							
	(при наблюдении							
	электромагнитной индукции)»							
77	Контрольная работа №6	130	1			Сам. работа	тесты	тесты
	«Электродинамика»							
78	Диапазоны электромагнитных	131	2			Теоретическое	ПК, проектор,	П 51,56,57
	излучений и их практическое	132					БП, ИУ, ЭУ	
	применение.							
79	Принципы радиосвязи и	133	2					
	телевидения.	134						

80	Геометрическая оптика. Прямолинейное распространение света в однородной среде.	135 136	2	Сложная природа света	3	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 59,62
81	Законы отражения и преломления света	137 138	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 59,62
82	Полное внутреннее отражение. Оптические приборы.	139	1	Виды электромагнитных излучений	3	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 64-67
83	Лабораторная работа № 12 «Определение показателя преломления среды»	140	1			Практическое	ПК, проектор, БП, ИУ, ЭУ	Л.Р. №6
84	Волновые свойства света. Скорость света	141 142	2	Применение интерференции и дифракции света	3	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 69-73
85	Интерференция света. Когерентность. Дифракция света	143 144	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 69-73
86	Поляризация света. Дисперсия света.	145 146	2	Применение поляризованного света	4	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 69-73
87	Практическое применение электромагнитных излучен	147 148	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 69-73
88	Лабораторная работа № 13 «Измерение фокусного расстояния собирающей и рассеивающей линзы»	149	1	Применение дисперсии света	3	Практическое	ПК, проектор, БП, ИУ, ЭУ	Л.Р. №6
89	Лабораторная работа №14 «Определение длины световой волны»	150	1			Практическое	ПК, проектор, БП, ИУ, ЭУ	Л.Р. №6
90	Практическое занятие №26,27 «Наблюдение волновых свойств света: дифракция, интерференция, поляризация»	151 152	2			Практическое	ПК, проектор, БП, ИУ, ЭУ	сообщение
91	Практическое занятие №28 «Исследование зависимости угла преломления от угла падения»	153	1		_	Практическое	ПК, проектор, БП, ИУ, ЭУ	сообщение
92	Практическое занятие №29	154	1	Применение линз	3	Практическое	ПК, проектор,	сообщение

93	«Исследование зависимости расстояния от линзы до изображения от расстояния от линзы до предмета» Практическое занятие №30,31	155	2			Практическое	БП, ИУ, ЭУ	сообщение
	Проверка гипотезы: «Угол преломления прямо пропорционален углу падения»	156					БП, ИУ, ЭУ	
94	Практическое занятие №32,33 Проверка гипотезы: «При плотном сложении двух линз оптические силы складываются»	157 158	2			Практическое	ПК, проектор, БП, ИУ, ЭУ	сообщение
		Осно	вы спе	циальной теории отн	осительн	ости		
95	Инвариантность модуля скорости света в вакууме	159 160	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 75-79
96	Принцип относительности Эйнштейна	161 162	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 75-79
97	Пространство и время в специальной теории относительности. Энергия и импульс свободной частицы	163	1			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 75-79
98	. Связь массы и энергии свободной частицы. Энергия покоя	164	1	Теория относительности «ЗА» и «ПРОТИВ»	3	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 75-79
		Кванто	вая фи	зика. Физика атома і	и атомног	о ядра		
99	Предмет и задачи квантовой физики. Тепловое излучение	165 166	2	Виды спектров	4	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 87-92
100	. Распределение энергии в спектре абсолютно черного тела.	167 168	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 87-92
101	•							
102	Гипотеза М. Планка о квантах. Фотоэффект.	169 170	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 87-92
103	Опыты А.Г. Столетова, законы фотоэффекта. Уравнение А. Эйнштейна для фотоэффекта. Фотон.	171 172	2	Применение фотоэффекта	3	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 87-92
104	Опыты П.Н. Лебедева и	173	2			Теоретическое	ПК, проектор,	П 87-92

	СИ В Г П	174					EH IM DV	
	С.И. Вавилова. Гипотеза Л. де	1/4					БП, ИУ, ЭУ	
	Бройля о волновых свойствах частиц.							
107	Корпускулярно-волновой дуализм.							7.00.07
105	Дифракция электронов. Давление	175	2			Теоретическое	ПК, проектор,	П 93-96
	света	176					БП, ИУ, ЭУ	
106	Соотношение неопределенностей	177	2			Теоретическое	ПК, проектор,	П 93-96
	Гейзенберга	178					БП, ИУ, ЭУ	
107	Модели строения атома.	179	2			Теоретическое	ПК, проектор,	П 93-96
		180					БП, ИУ, ЭУ	
	Объяснение линейчатого спектра	181	2			Теоретическое	ПК, проектор,	П 93-96
	водорода на основе квантовых	182					БП, ИУ, ЭУ	
	постулатов Н. Бора							
109	Практическое занятие №34	183	1			Практическое	ПК, проектор,	сообщение
	«Наблюдение спектров»						БП, ИУ, ЭУ	
110	Контрольная работа	184	1			Сам. работа	тесты	тесты
	№7«Квантовая физика»							
	Итого:	68						
	Теоретические занятия	49						
	Лабораторных работ	5						
	Контрольных работ	2						
	Практических занятий	12						
	Самостоятельная работа	36						
	-							
				Четвертый семес	тр			
111	Лабораторная работа № 16	185	1			Практическое	ПК, проектор,	Л.Р.№7
	«Определение импульса и энергии						БП, ИУ, ЭУ	
	частицы при движении в							
	магнитном поле (по							
	фотографиям).»							
	Спонтанное и вынужденное	186	1	Применение	2	Теоретическое	ПК, проектор,	лекция
	излучение света.			лазерного			БП, ИУ, ЭУ	
				излучения				
	Практическое занятие №35,36	187	2			Практическое	ПК, проектор,	сообщение
	«Исследование спектра водорода»	188					БП, ИУ, ЭУ	

113	Состав и строение атомного ядра. Изотопы	189 190	2	Опыт Резерфорда	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	лекция
114	Практическое занятие №37,38 «Применение изотопов»	191 192	2				, -,	
115	. Ядерные силы. Дефект массы и энергия связи ядра. Закон радиоактивного распада	193 194	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 104-113
117	. Ядерные реакции, реакции деления и синтеза.	195 196	2	Дозиметрические приборы	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 104-113
118	Цепная реакция деления ядер.	197 198	2	Применение термоядерного синтеза	3	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 104-113
119	Ядерная энергетика. Термоядерный синтез.	199 200	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 104-113
120	Практическое занятие №39,40 «Использование ядерной энергии»	201 202	2					
121	Практическое занятие №41,42 «Не традиционные источники электрической энергии»	203 204	2					
122	Элементарные частицы.	205 206	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 104-113
123	Фундаментальные взаимодействия. Ускорители элементарных частиц	207 208	2					
				Строение Вселенно				
124	Применимость законов физики для объяснения природы космических объектов.	209 210	2	Мифы и легенды о солнечной системе	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 117-119
125	Солнечная система	211 212	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 117-119
126	. Звезды и источники их энергии. Классификация звезд.	213 514	2	Достижения российских ученых в освоении космоса	3	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 117-119
127	Эволюция Солнца и звезд.	215	2			Теоретическое	ПК, проектор,	П 120-123

		216					БП, ИУ, ЭУ	
128	Галактика. Другие галактики	217 218	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 120-123
129	Пространственно-временные масштабы наблюдаемой Вселенной	219 220	2	Космос – далекий и близкий	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 120-123
130	Представление об эволюции Вселенной.	221 222	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 120-123
131	Темная материя и темная энергия	223 224	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 120-123
132	Законы физики и космические аппараты	225 226	2			Теоретическое	ПК, проектор, БП, ИУ, ЭУ	П 120-123
133	. Достижения России в освоении космоса.	227 228	2				, ,	
134	Практическое занятие №43,44 « Исследование движения двойных звезд (по печатным материалам).»	229 230	2			Практическое	ПК, проектор, БП, ИУ, ЭУ	сообщение
135	Лабораторная работа № 17 «Определение периода обращения двойных звезд (печатные материалы),»	231 232	2			Практическое	ПК, проектор, БП, ИУ, ЭУ	Л.Р.№8
136	Практическое занятие №45,46 «Вечерние наблюдения звезд, Луны и планет в телескоп или бинокль»	233 234	2			Практическое	ПК, проектор, БП, ИУ, ЭУ	сообщение
				Повторение				I
137	Механика	235 236	2	Решение типовых задач	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	Эк. билеты
138	Молекулярная физика и термодинамика	237 238	2	Решение типовых задач	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	Эк. билеты
139	Электродинамика	239 240 241 242	2	Решение типовых задач	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	Эк. билеты
140	Квантовая физика. Физика атома и атомного ядра	243 244	2	Решение типовых задач	2	Теоретическое	ПК, проектор, БП, ИУ, ЭУ	Эк. билеты

141	Практическое занятие №47,48,49	245	3		Практическое	ПК, проектор,	сообщение
	«Электрические цепи»	246				БП, ИУ, ЭУ	
		247					
142	Контрольная работа №8	248	1		Сам. работа	тесты	тесты
	Экзамен						
	Итого:						
	Теоретические занятия	46					
	Лабораторных работ	2					
	Контрольных работ	1					
	Практических занятий	15					
	Самостоятельная работа	24					

3. Условия реализации учебной дисциплины

Реализация учебной дисциплины требует наличия учебного кабинета: физики

Оборудование учебного кабинета: стандартная учебная мебель для обучающихся и преподавателя.

Технические средства обучения: персональный компьютер, акустические колонки, проектор, экран

В случае необходимости рабочая программа может быть использована для реализации образовательной программы в условиях дистанционного обучения.

Дистанционное обучение – способ организации процесса обучения, основанный на использовании современных информационных и телекоммуникационных технологий, позволяющих осуществлять обучение на расстоянии без непосредственного контакта между обучающимся и преподавателем.

Дистанционные образовательные технологии – образовательные технологии, реализуемые с применением информационно-телекоммуникационных сетей при опосредованном (на расстоянии) взаимодействии обучающихся и педагогических работников.

Электронное обучение — организация образовательной деятельности с применением содержащейся в базах данных и используемой при реализации образовательных программ информации и обеспечивающих ее обработку информационных технологий, технических средств, а также информационно-телекоммуникационных сетей, обеспечивающих передачу по линиям связи указанной информации, взаимодействие обучающихся и педагогических работников.

Электронная информационно-образовательная среда (ЭИОС) совокупность электронных образовательных ресурсов, средств информационно- коммуникационных технологий и автоматизированных систем, необходимых для обеспечения освоения обучающимися образовательных программ в полном объеме независимо от их местонахождения.

Google Classroom (Гугл-класс) бесплатный веб-сервис, разработанный Google для образовательных организаций, который призван упростить создание, распространение и оценку заданий безбумажным способом. Google Класс — это образовательный инструмент, который помогает учителям быстро создавать и управлять учебными заданиями, обеспечивать обратную связь и общаться со своими классами.

Домен ogk56.ru - домен, на котором размещена образовательная платформа Google Classroom, предназначенная для организации образовательного процесса в ГАПОУ «Оренбургский государственный колледж» как в дистанционном формате, так и для использования элементов ЭИОС при обучении в очном формате. Подключен к почтовому серверу G-mail.com. Домен ogk56.ru предназначен исключительно для обучающихся, преподавателей и администрации Колледжа, является закрытой системой, вход разрешен при наличии корпоративного логина и пароля.

Литература

Основная литература

- 1. Касьянов В.А. Физика (базовый уровень), 10 класс, ООО «Дрофа»
- 2. Касьянов В.А. Физика (базовый уровень), 11 класс, ООО «Дрофа»
- 3. Мякишев Г.Я.. Буховцев Б.Б., Сотский Н.Н. Физика 10 класс, АО Издательство «Просвещение».
- 4. Мякишев Г.Я.. Буховцев Б.Б., Сотский Н.Н. Физика, 11 класс, АО Издательство «Просвещение».

Дополнительная литература

- 1. Генденштейн Л.Э., Дик Ю.И. Физика (базовый и углубленный уровень), 10 класс, ООО «ИОЦ МНЕМОЗИНА»
- 2. Генденштейн Л.Э., Дик Ю.И. Физика (базовый и углубленный уровень), 11 класс, ООО «ИОЦ МНЕМОЗИНА»

- 3. Касьянов В.А. Физика (базовый уровень), 10 класс, ООО «Дрофа»
- 4. Касьянов В.А. Физика (базовый уровень), 11 класс, ООО «Дрофа

Интернет-ресурсы:

- 1. Анимации физических объектов. http://physics.nad.ru/
- 2. Живая физика: обучающая программа. http://www.int.edu.ru/soft/fiz.html
- 3. Физика: коллекция опытов. http://experiment.edu.ru/
- 4. Физика: электронная коллекция опытов. http://www.school.edu.ru/projects/physicexp

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения занятий, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, рефератов, исследований.

Результаты обучения (освоенные умения, усвоенные знания)	Формы и методы контроля и оценки результатов обучения
Уметь:	
- описывать и объяснять результаты наблюдений и экспериментов: независимость ускорения свободного падения от массы падающего тела; нагревание газа при его быстром сжатии и охлаждение при быстром расширении; повышение давления газа при его нагревании в закрытом сосуде; броуновское движение; электризация тел при их контакте; взаимодействие проводников с током; действие магнитного поля на проводнико с током; зависимость сопротивления полупроводников от температуры и освещения; электромагнитная индукция; распространение электромагнитных волн; дисперсия, интерференция и дифракция света; излучение и поглощение света атомами, линейчатые спектры; фотоэффект; радиоактивность; - приводить примеры опытов, иллюстрирующих, что наблюдения и эксперимент служат основой для выдвижения гипотез и построения научных теорий; эксперимент позволяет проверить истинность	Собеседование Тестирование Устный опрос Контрольные работы Практические занятия Лабораторные работы Сообщения Рефераты Собеседование Тестирование Устный опрос Контрольные работы Практические занятия
теоретических выводов; физическая теория дает возможность объяснять явления природы и научные факты; физическая теория позволяет предсказывать еще неизвестные явления и их особенности; при объяснении природных явлений используются физические модели; один и тот же природный объект или явление можно исследовать на основе использования разных моделей; законы физики и физические теории имеют свои определенные границы применимости;	Практические занятия Лабораторные работы Сообщения Рефераты
- описывать фундаментальные опыты, оказавшие существенное влияние на развитие физики;	Собеседование Тестирование Сообщения Рефераты
- применять полученные знания для решения физических задач;	Собеседование Тестирование Устный опрос Контрольные работы Практические занятия
- определять характер физического процесса по графику, таблице, формуле; продукты ядерных реакций на основе законов сохранения электрического заряда и массового числа;	Собеседование Тестирование Устный опрос Сообщения

	Рефераты
- измерять скорость, ускорение свободного падения,	Собеседование
массу тела, плотность вещества, силу, работу, мощность,	Тестирование
энергию, коэффициент трения скольжения, влажность	Устный опрос
воздуха, удельную теплоемкость вещества, удельную	Практические занятия
теплоту плавления льда, электрическое сопротивление,	Лабораторные работы
ЭДС и внутреннее сопротивление источника тока,	лаоораторные расоты
показатель преломления вещества, оптическую силу	
линзы, длину световой волны; представлять результаты	
измерений с учетом их погрешностей;	Carra
- приводить примеры практического применения	Собеседование
физических знаний: законов механики, термодинамики и	Тестирование
электродинамики в энергетике; различных видов	Устный опрос
электромагнитных излучений для развития радио- и	Сообщения
телекоммуникаций; квантовой физики в создании ядерной	Рефераты
энергетики, лазеров	
- воспринимать и на основе полученных знаний	Собеседование
самостоятельно оценивать информацию, содержащуюся в	Сообщения
СМИ, научно-популярных статьях; использовать новые	Рефераты
информационные технологии для поиска, обработки и	
предъявления информации по физике в компьютерных	
базах данных и сетях (сети Интернета).	
- обеспечения безопасности жизнедеятельности в	Собеседование
процессе использования транспортных средств, бытовых	Устный опрос
электроприборов, средств радио- и	Сообщения
телекоммуникационной связи;	Рефераты
- анализа и оценки влияния на организм человека и	Собеседование
другие организмы загрязнения окружающей среды;	Сообщения
	Рефераты
- рационального природопользования и защиты	Собеседование
окружающей среды;	Устный опрос
- определения собственной позиции по отношению к	Собеседование
экологическим проблемам и поведению в природной	
среде;	
- приобретения практического опыта деятельности,	Собеседование
предшествующей профессиональной, в основе которой	Сообщения
лежит данный учебный предмет.	
Знать:	
- смысл понятий: физическое явление, физическая	Собеседование
величина, модель, гипотеза, принцип, постулат, теория,	Устный опрос
пространство, время, инерциальная система отсчета,	Практические занятия
материальная точка, вещество, взаимодействие,	Лабораторные работы
идеальный газ, резонанс, электромагнитные колебания,	Сообщения
электромагнитное поле, электромагнитная волна, атом,	
квант, фотон, атомное ядро, дефект массы, энергия связи,	
радиоактивность, ионизирующее излучение, планета,	
звезда, галактика, Вселенная;	
- смысл физических величин: перемещение, скорость,	Собеседование
ускорение, масса, сила, давление, импульс, работа,	Тестирование
мощность, механическая энергия, момент силы, период,	Устный опрос
частота, амплитуда колебаний, длина волны, внутренняя	Контрольные работы

энергия, средняя кинетическая энергия частиц вещества,	Практические занятия
абсолютная температура, количество теплоты, удельная	
теплоемкость, удельная теплота парообразования,	
удельная теплота плавления, удельная теплота сгорания,	
элементарный электрический заряд, напряженность	
электрического поля, разность потенциалов,	
электроемкость, энергия электрического поля, сила	
электрического тока, электрическое напряжение,	
электрическое сопротивление, электродвижущая сила,	
магнитный поток, индукция магнитного поля,	
индуктивность, энергия магнитного поля, показатель	
преломления, оптическая сила линзы;	
- смысл физических законов, принципов и постулатов	Собеседование
(формулировка, границы применимости): законы	Тестирование
динамики Ньютона, принципы суперпозиции и	Устный опрос
относительности, закон Паскаля, закон Архимеда, закон	Контрольные работы
Гука, закон всемирного тяготения, законы сохранения	Практические занятия
энергии, импульса и электрического заряда, основное	Лабораторные работы
уравнение кинетической теории газов, уравнение	Сообщения
состояния идеального газа, законы термодинамики, закон	
Кулона, закон Ома для полной цепи, закон Джоуля-Ленца,	
закон электромагнитной индукции, законы отражения и	
преломления света, постулаты специальной теории	
относительности, закон связи массы и энергии, законы	
фотоэффекта, постулаты Бора, закон радиоактивного	
распада; основные положения излучаемых физических	
теорий и их роль в формировании научного	
мировоззрения;	
- вклад российских и зарубежных ученых, оказавших	Собеседование
наибольшее влияние на развитие физики.	Сообщения
	Рефераты